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Introduction

Observation suggests that type
Ia supernovae are not pure
detonations

Early stages are low speed
nuclear flames (slow relative to
local sound speed)

Late time dynamic behavior
requires dramatic acceleration
from nuclear flame

⇒ Simulate detailed microphysics of type Ia Supernovae to study potential
mechanisms for acceleration
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Supernova Modeling

Compressible Navier-Stokes equations:

Conservation of mass
ρt + ∇ · ρu = 0

Conservation of species abundance

(ρXk)t + ∇ · ρuXk = ρω̇k

Conservation of momentum

(ρu)t + ∇ · (ρuu + p) = ρ~g

Conservation of energy

(ρE)t + ∇ · (ρuE + up) = ∇ · κ∇T − ρQ(ω̇k)
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Equation of State

Timmes equation of state provides:

e(ρ, T, Xk) = eele + erad + eion

eele = fermi

erad = aT 4/ρ

eion = 3kT
2mp

∑

m Xk/Am

p(ρ, T, Xk) = pele + prad + pion

pele = fermi

prad = aT 4/3

pion = ρkT
mp

∑

m Xk/Am

h = e + p/ρ

The low-Mach number formalism actually uses

h(p, T, Xk) = h(ρ(p, T, Xk), T, Xk).
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Low Mach Number formulation
Methodology developed for combustion with ideal gas EOS

Introduced by Rehm and Baum (1978)

Analysis by Majda and Sethian (1985).

Expand u, ρ, T , Xk, and p, in Mach number, M = u/c

p(~x, t) = p0 + Mp1 + M2p2

Asymptotic analysis shows

p(~x, t) = p0(t) + π(~x, t) + O(M3), where
π

p0

∼ O(M2)

p0(t) does not affect local dynamics

π(~x, t) does not affect thermodynamics.
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Low Mach Number formulation

ρt + ∇ · ρu = 0

(ρXk)t + ∇ · ρuXk = ρω̇k

(ρu)t + ∇ · (ρuu) = −∇π + ρ~g

(ρh)t + ∇ · (ρuh) = ∇ · κ∇T − ρQ(ω̇k)

Velocity constraint: Differentiate EOS along particle paths

ρ
Dp

Dt
= 0 = ρ

∂p

∂ρ

Dρ

Dt
+ ρ

∂p

∂T

DT

Dt
+ ρ

∑

k

∂p

∂Xk

DXk

Dt

to obtain

∇ · u =
1

ρ2 ∂p
∂ρ

(

ρ
∂p

∂T

DT

Dt
+ ρ

∑

m

∂p

∂Xk
ω̇k

)

≡ S
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Fractional Step Approach

1. Advance velocity from ~Un to ~Un+1,∗ using explicit advection terms
and a lagged pressure gradient.

2. Update the species, enthalpy and temperature

3. Use the updated values to compute Sn+1

4. Decompose ~Un+1,∗ to extract the component satisfying the
divergence constraint.

We currently use Strang splitting to advance the species, enthalpy and
temperature.
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Strang Splitting

Species/enthalpy advance

(ρXk)t + ∇ · ρuXk = ρω̇k

(ρh)t + ∇ · (ρuh) = ∇ · κ∇T − ρQ(ω̇k)

Stiff kinetics relative to fluid dynamical time scales

Operator split approach

Chemistry ⇒ ∆t/2

Advection – Diffusion ⇒ ∆t

– BDS unsplit Godunov
– Crank-Nicolson Diffusion

Chemistry ⇒ ∆t/2
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Properties of the methodology

Formulation conserves species, mass and energy.

Overall operator-split projection formulation is 2nd-order accurate in
space and time.

Second-order Godunov treatment of advection

Embedded in parallel adaptive projection framework
– Structured adaptive mesh refinement
– Refinement in space and time
– Parallelization using BoxLib framework

Large-grained data distribution
Dynamic load balancing
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Applications

Computational studies

Validation against compressible code (FLASH)

Landau-Darrieus instabilities

Rayleigh Taylor instabilities

Rayleigh Taylor instabilities

Carbon, oxygen and magnesium flame

Inflow, ρ12C = 5 × 106, ρ16O = 5 × 106, T = 1 × 107

163.84 cm x 327.68 cm, 2D domain

Effective resolution 1024 x 2048

Initialize with randomly perturbed laminar flame solution
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Simulation results

Temperature Carbon Abundance Energy
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Splitting

Observations:

Stiffness of reaction terms requires implicit integration

Strang splitting limits accuracy to second-order

Splitting errors lead to additional timestep restrictions

In 1-d flame problem, at fixed ∆x, flame speed is very sensitive to ∆t.

Flame location
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Improving the numerics

Potential options to couple advection, diffusion and reaction

Fully implicit MOL approaches
– BDF or IRK integration methodology
– Fully coupled nonlinear solve

Weak (lagged) coupling of operators
– Boris and Oran
– Sun
– Iterated operator splitting methods
– Approximate factorization
– Difficult to make higher-order

Spectral deferred corrections
– Introduced by Dutt, Greengard and Rokhlin for ODE
– Minion – SISDC
– Bourlioux, Layton, Minion – MISDC
– Layton, Minion – Conservative MISDC
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Spectral deferred correction

Given an ODE ut = f(t, u) on an interval [a, b]. We can write the solution of
the ODE as an integral

u(t) = ua +

∫ t

a
f(τ, u) dτ

Suppose we have an approximate solution û(t). Define the residual

E(t, û) = ua +

∫ t

a
f(τ, û) dτ − û(t)

Then, the error δ(t) ≡ u(t) − û satisfies

δ(t) = u(t) − ˆu(t) = (ua +

∫ t

a
f(τ, u) dτ) − (ua +

∫ t

a
f(τ, û) dτ − E(t, û))

δ(t) =

∫ t

a
(f(τ, û + δ) − f(τ, û))dτ + E(t, û)
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Spectral deferred correction (p2)

Idea of SDC is to compute an initial û at M Gauss points, tm.

Recall

δ(t) =

∫ t

a
(f(τ, û + δ) − f(τ, û))dτ + E(t, û)

where E(t, û) = ua +
∫ t
a f(τ, û) dτ − û(t)

If we evaluate E(t, û) at tm by spectral quadrature, then we can use a
lower order approximation to the integral to improve the accuracy of û

ûnew = ûold + δ

Observe that we can rewrite the δ equation in terms of û at tm+1:

ûnew,m+1 = ûnew,m +∆t(f(tm+1, ûnew,m+1) − f(tm+1, ûold,m+1))

+

∫ tm+1

tm

f(τ, ûold) dτ
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SDC for Advection/Diffusion/Reaction
SDC is iteratively improving a higher-order polynomial approximation to
the solution over a time interval

MISDC for advection/diffusion/reaction:

Treat each term separately using a simple OS approach

Explicit advection, implicit diffusion, implicit reactions

Use different time steps for each process

Iterate procedure with SDC interpolating polynomial
– Interpolating polynomial couples the processes

We want to use the deferred correction ideas to couple advection, reaction
and diffusion

Use different representations for each physical process

Reuse existing components of the methodology

Integrate reactions using VODE – Think of VODE as "exact"

Type Ia Supernovae – p. 18/32



Linear deferred corrections algorithm

Consider the system ut = A(u) + D(u) + R(u)

Integral form of solution is

un+1 = un +

∫ tn+1

tn

A(u) + D(u) + R(u) dτ

Approximate terms separately:

A approximated as piecewise constant in time

D linear in time

R "exact" integration using VODE

Components of the algorithm

1. Compute an initial solution

2. Construct a representation of the solution

3. Iterative correction to improve the solution
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Second-order Godunov
Consider

ut + aux = F for a > 0

Second-order Godunov – cell-centered discretization

1. Construct (4th-order) slopes in each cell: δun
j

2. Predict time-centered value at cell edge using characteristics

u
n+1/2
j+1/2

= un
j + 1/2(∆t − a∆x)δun

j + 1/2∆tF

3. Construct fluxes for conservative difference

aux =
au

n+1/2
j+1/2

− au
n+1/2
j−1/2

∆x
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Initialization of û

1. Compute An+1/2 with Godunov scheme, using D(un) as source

2. Solve for ũn+1 in order to compute D(ũn+1):

(I − ∆tD)ũn+1 = un + ∆tAn+1/2

3. Integrate reactions with VODE:

u′ = R(u) + D(ũn+1) + An+1/2 with u0 = un

which in integral form gives

ûn+1 = un +

∫ tn+1

tn

(R(u) + D(ũn+1) + An+1/2) dτ
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Construct approximation

Construct a polynomial approximation to advection and diffusion during
time step

An+1/2 + ((tn+1
− t)D(un) + (t − tn)D(ûn+1)/∆t

I(t) ≡

∫ t

tn

An+1/2 + ((tn+1
− τ)D(un) + (τ − tn)D(ûn+1)/∆t dτ

From ODE integration define

IR ≡

∫ tn+1

tn

R(u)dτ = un+1
− un

− ∆t(D(ũn+1) + An+1/2)

We then approximate

∫ tn+1

tn

A(u) + D(u) + R(u) dτ ≈ I(tn+1) + IR
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SDC for A/D/R: Iterative correction

1. Update advection An+1/2,new with Godunov-type scheme, using
D(un) and IR as sources for characteristic tracing.

2. Solve for ũn+1,new in order to compute D(ũn+1,new):

ũn+1,new = un + ∆t(D(ũn+1,new) − D(ûn+1,old))

+ ∆t(An+1/2,new
− An+1/2,old) + I(tn+1) + IR

3. Integrate reactions with VODE

ut = R(u)+ I ′(t)+D(ũn+1,new)−D(ûn+1,old)+An+1/2,new
−An+1/2,old

with u0 = un

ûn+1,new = un + I(tn+1) +

∫ tn+1

tn

R(u)dτ

+ ∆t(D(ũn+1,new) − D(ûn+1,old) + An+1/2,new
− An+1/2,old)
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Update solution representation

From ODE integration update

IR = ûn+1,new
− un

− I(tn+1) − ∆t(D(ũn+1,new) − D(ûn+1,old))

− ∆t(An+1/2,new
− An+1/2,old)

Update polynomial approximation to effect of advection and diffusion
during time step

An+1/2,new + ((tn+1
− t)D(un) + (t − tn)D(ûn+1,new))/∆t

I(t) =

∫ tn+1

tn

An+1/2 + ((tn+1
− τ)D(un) + (τ − tn)D(ûn+1,new)/∆t dτ

Iteration improves order of accuracy one order up to accuracy of
quadrature rule.

Can retain lagged approximation to IR
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Sample Problem

Consider a simplified advection-diffusion-reaction problem
We define, for i = 1, ...4,

yit + uyix = Dyixx + Ri

R1 = −k1y1y4 − k2y1,

R2 = k1y1y4,

R3 = k2y1,

R4 = −k1y1y4.
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Effect of coupling
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Model Problem Convergent Results

We initialize the problem on a [0, 1] domain with y1 = .5(1 + sin(2πx)),
y2 = y3 = 0, and y4 = .5(1 + sin(2π(x − .1))) with D = 1, k1 = 20, k2 = 4

The calculations are run to t = 0.0625 with ∆t = 0.5∆x (recalling u = 1).

Below we present a combined norm of the errors of yi, with the error
defined as the difference from the “exact” solution (that generated with
nx = 2048.).
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Higher-order Extensions

Higher-order temporal integration (4th order)

Divide interval [0, ∆t] into two subintervals

Compute initial solution from two steps of basic algorithm

Construct quadratic approximation to advection and diffusion on the

interval by evaluation operators at tn, tn+1/2 and tn+1 and define IQ(t)

to be the integral of that quadratic

From ODE solve define IR1
and IR2

representing the effective of
chemistry over the two subintervals.

Perform iterative correction as before

Higher-order in space

Use higher-order approximations in constructing quadratic
approximation

– PPM for the advection terms
– Higher-order centered difference for diffusion

Solve correction equations with lower-order operators
– Second-order Godunov for the advection terms
– Second-order centered difference for diffusion Type Ia Supernovae – p. 28/32



Convergence of quadratic iterations

Log-Log Plot of Errors from Iterations of Quadratic Scheme
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Comparison of schemes

Log-Log Plot of Errors from Iterations of Quadratic Scheme
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1-D Supernovae flames

Temperature
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Summary and Remarks / Future work

Low Mach number methodology for modeling nuclear flames in
Type Ia supernovae

– Eliminates acoustic waves
– Projection based fractional step algorithm
– Parallel, adaptive implementation

Spectral deferred corrections
– Couples processes
– Extensible to higher-order

Remarks

Integrate deferred corrections into multi-dimensional code

Extend ideas to treat the entire system

SDC is not L-stable
– Limits to time step if not advection dominated
– Explore alternative ansatz for solution structure

Many variations on this theme are possible
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